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Summary 

FamilyTreeDNA team is excited to introduce MYORIGINS V3, our new tool for estimating 
population ancestry. Population ancestry is the proportion of DNA you have inherited from each 
ancestral population. Depending upon how much admixture occurred between your ancestors, 
you may have inherited DNA from one or perhaps many populations. 
 
We have updated many aspects of our pipeline, including: 

(1) An increase in number of reference populations from 24 to 90, 

(2) Improvements in precision and accuracy using our newest methodological advancements, 

(3) A chromosome painting: 

• You may learn the chromosomal location of each population segment, 
• This information may be genealogically valuable. 
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Glossary of Genetic and Analytical Terms 

 

Accuracy – Ability to classify something correctly. 

Admixture – Occurs when individuals of distinct population ancestries produce offspring, whose 
DNA is then a mosaic of ancestries (usually within a genealogical timeframe). 

Ancestry-informative marker – Marker with large allele frequency differences between populations; 
thus, they may be informative about a person’s population ancestry. 

Allele – One of two or more variants of DNA sequence found at a genetic locus (e.g., ‘T’). 

Autosomal – Describing all of the 22 pairs of chromosomes that exclude X, Y, and mitochondrion. 

Base pair (bp) – Smallest length of DNA; one complementary pair of DNA bases (nucleotides). 

Biallelic – A genetic marker (usually a SNP) possessing only two alleles in the population. 

Bifurcating tree – Phylogenetic tree where every divergence contains exactly two daughter branches. 

Centimorgan (cM) – A unit of distance along a chromosome. Between two chromosome positions 
that are spaced 100 cM apart, one recombination event is expected per generation. 

Chromosome – One unbroken strand of DNA folded and condensed into the cell nucleus; humans 
have 23 pairs (one from each parent). 

Chromosome painting – A depiction of an individual’s ancestry showing the (super-)population of 
origin for each chromosomal segment. 

Conditional Random Field (CRF) – Similar to an HMM but generalized for classification purposes. 

Diploid – Refers to the pair of all chromosomes, maternal and paternal; haploid is half of a pair. 

Deoxyribonucleic Acid (DNA) – The genetic blueprint of life and basis for inheritance; encoded by 
four nitrogenous bases (A, C, G, and T). 

Ethnicity – Social or cultural group of people; used here to refer to a subgroup of a larger population. 

Gene flow – Movement of individuals and their genetic material from one population to another 
continuously across a period of time; similar to admixture (which may be shorter in duration). 

Genetic drift – Population change in allele frequencies over one or more generations that is due to 
offspring inheriting a random draw of parental alleles; exacerbated by small population size. 

Genotype – An individual’s genetic makeup from both maternal/paternal sides (e.g., ‘T/G’); may refer 
to one or multiple genetic loci. 

Haplotype – Ordered sequence of DNA along only one of the two chromosome copies (maternal or 
paternal; e.g., ‘TAAGACTT’). 

Hidden Markov Model (HMM) – Statistical model used to predict a sequence of events or states by 
observing a closely related sequence; the first sequence is “hidden” while the second is “observed.” 

Hierarchical clustering – Statistical technique for grouping similar features together into a hierarchy. 

Homozygous – A genotype with two identical alleles (e.g., ‘T/T’). 

Heterozygous – A genotype with two different alleles (e.g., ‘T/G’). 

Identical-by-descent – A shared segment descending from a common ancestor in genealogical time. 

Identical-by-state – A shared segment that is identical but does not share a recent common ancestor. 
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Leave-one-out cross validation (LOOCV) – Technique for assessing accuracy of a model by 
removing each reference sample and predicting its result and then comparing to the true value. 

Linkage disequilibrium – Correlation between SNP alleles that are physically close together. 

Locus – Any defined location in the genome. 

Machine learning – A method of artificial intelligence that can efficiently predict unknown values. 

Marker – Any locus known to have genetic variation between individuals. 

Megabase (Mb) – The physical distance along a chromosome; one million base pair positions. 

Mutation – An error in DNA copying that results in a new allele transmitted to offspring; also, may 
refer to the new allele itself. 

Natural selection – Population change in allele frequencies over one or more generations that is due 
to alleles conferring different probabilities of survival and/or reproductive success. 

Panmixia – Completely random interbreeding; any two individuals might have offspring. 

Phasing – Sorting out genotype data so that all maternal and paternal alleles are on the correct side. 
Although the DNA itself requires no phasing, the genotype array data are acquired SNP by SNP such 
that the original phase is unknown. The results of phasing are maternal and paternal haplotypes.   

Phasing (statistical) – Phasing that utilizes a cohort of samples to ascertain which alleles statistically 
occur together the most; statistical phasing usually produces more switch errors than trio phasing. 

Phasing (trio) – Phasing that utilizes samples from the mother and/or father of a subject; trio phasing 
usually produces very few switch errors except where all three samples are heterozygous. 

Phase correction – A step used after phasing to reduce the severity of switch errors. 

Pipeline – A workflow of computational steps. 

Population – Group of individuals that has intermarried in isolation from other populations to such a 
degree that they are genetically distinguishable. 

Population genetics – Study of genetic variation within and between populations and how it evolves 
via mutation, genetic drift, gene flow, natural selection, and recombination. 

Principal Component Analysis (PCA) – Statistical technique for exploring the variation of a dataset 
in lower-dimensional space. 

Recombination – The process of mixing and matching paternal/maternal haplotypes into new 
recombinant haplotypes; occurs while producing sperm or egg cells. 

Reticulated tree – Phylogenetic tree where branches do not simply diverge, they also merge together. 

Single Nucleotide Polymorphism (SNP) – A type of genetic marker composed of only one base pair 
position. 

Specificity – Ability to classify something into a precise group or subgroup. 

Statistical noise – Random variation in some data that cannot be explained by known variables. 

Switch error – Incorrect phasing from one heterozygous SNP to the next heterozygous SNP. 

Triallelic – A genetic marker (usually a SNP) possessing three alleles in the population. 

Typological – Categories that are static, unchanging, and unmixed. 

Viterbi algorithm – An algorithm used to estimate the most likely hidden sequence for HMMs. 
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Overview 

FamilyTreeDNA is dedicated to providing customers the most useful genealogical information 
grounded in the best scientific framework available. The science of population genetics and 
ancient DNA is continually reshaping our understanding of the human story. An explosion of 
genomic datasets, methodological advances, and increased population sampling have given us an 
unprecedented toolset for unraveling our history. One of the major epiphanies of the last decade 
has been that human populations are never typological; each one is itself a mixture of previous 
ancestral populations [1]. For example, Amerindians are the mixture of Ancient North Eurasians 
and East Asians some 20–25 thousand years ago [2]. Similarly, modern Europeans are the 
complex mixture of three prehistoric populations from the Paleolithic, Neolithic, and Bronze Age 
[3]. Over the past few thousand years, with the development of new technologies and cultures, 
human population structure has become even more mosaic. We are proud to announce our new 
MYORIGINS v3 feature, which offers an unparalleled snapshot of our customers’ pre-Columbian 
population ancestry. 

Before describing the goals and achievements of MYORIGINS v3, first we must distinguish three 
types of ancestry analyses: (1) ancient, (2) pre-Columbian, and (3) recent (Fig. 1). 
ANCIENTORIGINS traces back your ancestry from pre-historic or archaic populations, roughly 
corresponding to the period before the Common Era (>200,000–2,000 years ago). Although we 
currently test for ancestry from three European pre-historical populations, we plan to expand this 
soon. MYORIGINS is designed to estimate ancestry proportions from highly distinct populations 
that existed prior to major continental travel (roughly 2,000–500 years ago). For example,  

Figure 1. The timeline of three types of ancestry product. Updated and modified with permission based on [4]. 
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Latino origins would include both European and Amerindian components, rather than a single 
admixed population (e.g., “Ecuadorian”). Finally, another type of product is ideal for populations 
such as “Ecuadorian” that are too recent, geographically specific, or admixed for MYORIGINS. 
Unlike MYORIGINS, the methodology for such a product cannot estimate a percentage or 
proportion, only a match strength (e.g., low, medium, or high). Although we do not currently 
provide analysis for more recently formed populations, we plan to release such a feature soon. 
 
Ancestry analyses such as MYORIGINS are designed to estimate proportions of DNA that were 
inherited from ancestral populations. However, such tests require genetic distinguishability 
between populations to exist. A long time period of isolation is required—whether via 
geographic or ethnocultural barriers—for ancestry-informative markers to emerge (Fig. 2A). 
This is because the processes for generating novel genetic variation are a very slowly ticking 
clock, and they only tick once each generation (25–30 years). These processes include mutation, 
genetic drift, and recombination. For example, approximately 14% of SNP markers in the human 
genome are ancestry-informative* on a global scale but fewer than 1% are ancestry-informative 
in Europe. Thus, continent-level population structure is much easier to detect than sub-
continental or ethnic structure. 
 
Additionally, ancestry-informative markers accumulate in small genomic islands (Fig. 2B). In 
other words, while populations are diverging from one into many, most of their DNA sequences 
remain statistically indistinguishable except for a few isolated places randomly scattered across 
the genome [5–11]. Over time these genomic islands grow larger and eventually would include 
the entire genome if given sufficient time (many 100,000s of years). This means that if you 
randomly select any segment of autosomal DNA, you are very likely to know its continent of 
origin but much less likely to know its specific population of origin. Hence, for any set of 
populations—e.g., Iberian, Russian, and British—a larger number of SNP markers increases the 
resolution to distinguish them, because more of these genomic islands are sampled (Fig. 2C). 
 
Many methods exist for estimating admixture proportions. So-called “local” methods work by 
breaking up the genome into small segments and assigning each one to a reference population. 
Then, the admixture proportions can be calculated by simply aggregating the segments for each 
group. Many local ancestry methods have been published to date often utilizing Hidden Markov 
Models (HMMs) or similar graphical models, sometimes in conjunction with machine learning 
approaches [12–36]. The major benefit of local methods is their ability to identify each segment 
of each chromosome individually (i.e., make a chromosome painting). Given that random 
recombination breaks apart maternal and paternal haplotypes each generation, there is a 
usefulness to knowing how our population proportions are distributed across our DNA. For 
example, combining a Family Finder match with a known population for that segment of DNA 
may help narrow down the genealogical common ancestor. 
 
However, local methods are by definition limited by a small number of genetic markers. This 
means very closely related populations cannot be accurately distinguished for the reasons 
explained above (Fig. 2). By contrast, “global” methods estimate ancestral populations for the 

 
*We define ancestry-informative here as having a value of Weir and Cockerham’s 𝐹!" ≥ 0.15. 
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Figure 2. Populations are only distinguishable if: (A) they are isolated for a sufficient period of time, (B) enough 
genetic markers have diverged during that time, and (C) enough divergent markers are sampled. (A) Populations 
are often somewhere between the extremes of complete isolation and complete panmixia (free interbreeding). 
(B) As populations become isolated for longer periods of time, small “islands” of DNA become highly 
divergent. Over time the DNA islands grow in size. (C) Thus, populations can only be distinguished if these 
islands of DNA are sampled. Taking three closely related populations—Iberian, Russian, and British—we can 
see that a moderate number of SNP markers across the whole genome is needed to distinguish them fully. The 
300,000 SNPs in this case are randomly chosen markers, free of linkage disequilibrium. 
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entire genome simultaneously [37–52]. This gives global methods high resolution (many SNPs) 
to estimate admixture proportions. Instead of classifying each segment of DNA into one of the 𝑁 
reference populations, the entire genome is modeled as a vector of 𝑁 proportions. SNP locations 
are not used, because each SNP is treated as a statistical sample of a genome-wide process of 
admixture. Typically, global methods work by assuming each population consists of people 
randomly interbreeding—this assumption vastly simplifies the math. A person’s genotype is then 
simply a random draw of SNP alleles from a frequency distribution in each population. The 
major benefit of global methods is their higher accuracy in resolving ancestry from closely 
related populations by using genome-wide SNPs (Fig. 2C). The drawbacks include an inability to 
identify which DNA segments comprise which proportions (i.e., no chromosome painting). Also, 
if the assumption of random interbreeding is unrealistic, results may suffer. 
 
MYORIGINS v3 combines dual strengths of global and local ancestry methods to improve results. 
Our new pipeline has three main steps. (1) A global ancestry method with high computational 
efficiency narrows down the list of possible populations and estimates proportions for very 
closely related populations (e.g., West Slavic vs. East Slavic). The computational efficiency of 
this step allows us to include an unprecedented 90 populations. (2) Each pair of chromosomes 
(maternal and paternal) is phased and broken into small segments. (3) A local ancestry method 
classifies each DNA segment into “super-populations” (e.g., Western Europe vs. Eastern 
Europe). Super-populations are used for this last step, because this is the genetic distinctness 
required to accurately classify small DNA segments. MYORIGINS v3 results include 90 
population proportions along with a chromosome painting, which can be used in conjunction 
with Family Finder match results to identify common ancestors for genealogical work.  

 
 
Figure 3. Tradeoffs. When designing a population ancestry analysis, tradeoffs exist between (1) accuracy,  
(2) specificity via number of populations, and (3) whether or not a chromosome-specific ancestry is estimated. 
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We had four main goals while improving MYORIGINS: 

(1) Increase accuracy, 
(2) Increase specificity, 
(3) Increase the number of populations, 
(4) Estimate a chromosome painting (i.e., use local ancestry methodology). 

 
There are important tradeoffs between these four goals (Fig. 3). Adding more specific 
populations such as “Ireland” and “Great Britain” instead of simply “British Isles” can reduce the 
accuracy of both. This is because the average gene flow over 2,000 years has been substantial 
following founding by closely related populations such as Romano-British, Picts, Gaels, 
Normans, and Anglo-Saxons. However, we mitigated this by only choosing populations that 
could be estimated with an acceptable level of accuracy. Similarly, increasing the number of 
populations from 24 to 90 can reduce accuracy considerably if the new population boundaries are 
closer together than before. We weighed the potential gain of each new population against the 
lost accuracy or specificity. Finally, a chromosome painting would potentially reduce accuracy if 
we estimated local ancestry of DNA segments for populations. However, if we only estimated 
continent-level segments, this would reduce specificity. Hence, we compromised by painting at 
the intermediate level of super-populations. 
 
With the exciting introduction of MYORIGINS v3, we provide a new map that is very 
representative of all human diversity on Earth (Fig. 4) and vastly increases the number of 
populations offered on each continent (Table 1). We believe it will give our customers an 
indispensable toolkit for understanding their ancestry, conducting genealogy, and putting their 
origins into a larger perspective about human origins. 

Table 1. Comparison of population number within each continental region. 

Continent MYORIGINS V2 
Populations 

MYORIGINS V3 
Populations 

Africa 4 21 

Europe & Middle East 12 27 

Asia & Oceania 6 33 

Americas 2 9 

Total 24 90 
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Figure 4. Map showing the geographical extent of each ancestral population (“Origin”). Compared to 
MYORIGINS v2 (A), MYORIGINS v3 (B) is much more representative of global genetic diversity both in terms of 
geographical representation and number of populations (V2: 24 populations; V3: 90 populations). 
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What is a Population? 

Before delineating the boundaries of populations, it is a good idea to first define what we mean 
by “population.” The evolutionary-genetic definition [53] has the following criteria: 
 

• A population must be cohesive within, 
• A population must be distinct from other populations. 

 
Putting that into more formal population genetic language: 
 

• A population is a group of individuals that is panmictic (randomly interbreeding), 
• A population has sufficiently low gene flow with other populations 

(typically less than one migrant entering the population per generation, averaged over 
thousands of years [54]). 

 
In reality, groups of individuals have complex histories of isolation, movement, marriage 
patterns, and demographic changes. This can make the boundaries of closely related populations 
very fuzzy as discussed above (Fig. 2). 
 
Population boundaries are also fuzzy because everyone descends from many locations on Earth 
[55]. This seems extremely counterintuitive but is easy to mathematically prove. Imagine a man 
who is 100% Scandinavian living today in Sweden. His genealogical ancestors double each 
generation back in time. One thousand years ago (roughly 33 generations ago), he had 233 = 8.5 
billion genealogical ancestors. However, in the year 1000 C.E., Europe only had a population of 
~50 million. Some simple math* shows that everyone who was alive in Europe around the year 
1000 C.E. is an ancestor of everyone in Europe today, or of no one. Therefore, the Swedish man 
has the same set of ancestors as a man whose family is 100% Iberian. If we all have the same 
ancestors, then where do our genetic differences come from? To understand this, you need to 
appreciate two facts: 
 

(1) Our genealogical ancestors are related to us on multiple different lines, 
(2) Our genetic ancestors are a random sample of our genealogical ones (Fig. 5). 

 
Although two Europeans have almost identical sets of genealogical ancestors from 1000 C.E., 
they are related to those ancestors along different lines [56]. The Swede and Iberian may share 
millions of genealogical ties. However, the Swede has perhaps 1,000 ties to a Scandinavian 
ancestor, and the Iberian man has perhaps only 10 ties to that same Scandinavian ancestor. 
Thanks to the randomness of genetic recombination, the Swede is 100´ more likely to inherit 
Scandinavian DNA than Iberian DNA. The bottom line: your DNA descends from a random 
subset of your ancestors, but your DNA composition tends to reflect the ancestors who were 
closest to you in geographic space (Fig. 5). Populations are groups of statistically similar DNA—
they are not simple categories. 

 
*The “Identical Ancestors Point” (IAP) was 1.77 × log#(Pop. Size) generations ago or 1,350 years ago in Europe. 
The “Time to Most Recent Common Ancestor (TMRCA) was log#(Pop. Size) generations ago or just 775 years ago 
in Europe. This assumes panmixia. 
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Figure 5. (A) You have an exponentially increasing number of genealogical ancestors, but a much smaller number 
of genetic ones. Your genealogical ancestors outnumber the world population less than 1,000 years ago. This is 
because most of your ancestors are duplicated in your family tree. (B) Most of your ancestors from 15 generations 
ago contributed no DNA to you, due to random genetic recombination, and finite space in the genome. 
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Reference Panel 

In order to infer ancestry from ancestral populations, first a set of reference populations must be 
constructed as proxies for those ancestral populations. The first step is collecting samples from 
populations that are potentially suitable (i.e., distinct enough with adequate sample size). The 
next step is discovering population structure: which populations are actually distinct, which 
samples are unadmixed, and which reference populations have enough samples after screening. 
Finally, we need to hierarchically group the new reference population set into super-populations 
so that global and local ancestry methods can be seamlessly combined (see Overview). 
 

Data Sources 

We derived our MYORIGINS V3 reference samples from a combination of sources: 
 

• FamilyTreeDNA internal data and private collections, 
 

• Publicly available databases from international consortia of researchers, 
including the 1000 Genomes Project [57]  
and the Human Genome Diversity Project [58,59] 
 

• Other publicly available data. 
 
In order to include a sample, the data needed to be compatible with our Gene by Gene BeadChip 
array. This means we only considered data produced by other Illumina SNP arrays with a large 
percentage of intersecting markers (i.e., >95%) or whole-genome sequencing data with sufficient 
sequencing depth (i.e., mean 20×). 
 
We also derived our 100K phasing panel (see ‘Phasing’) from FamilyTreeDNA private 
collections. We selected a balanced sample of approximately 100,000 individuals with 
population ancestry spanning all of human diversity. This ensures that the phasing panel contains 
haplotypes that match any potential customer sample. 
 
Only biallelic SNP markers were used (i.e., those with only two alleles) for simplicity. Triallelic 
SNPs can cause problems for data produced by different technologies—sequencing may recover 
the true genotype, while SNP arrays may only consider two out of three alleles. We used a minor 
allele frequency (MAF) cutoff of ³0.001, ensuring that the genetic diversity in our panel is found 
widely enough to be considered real and not an artifact of any technology. Across all MYORIGINS 
v3 reference samples, the MAF was 0.24 ± 0.14, and the genotyping rate across all samples and 
SNPs was 0.99, for a total of 637,645 SNPs. 
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Finding Population Structure 

We used Principal Component Analysis (PCA) to screen potential samples for existing 
population structure. PCA is a type of linear model and thus assumes each SNP is uncorrelated 
with the others. However, many SNPs are densely packed together in haplotypes and therefore 
are correlated with one another. This is known as linkage disequilibrium. Before conducting 
PCA, we used the software PLINK [60] to prune any SNPs with squared correlation (𝑅!) ³0.7 if 
they occurred within one megabase of each other. This left a total of 379,880 uncorrelated SNPs 
for PCA. Samples with close kinship (i.e., first cousin relationships or closer) are another type of 
genetic correlation that we removed from the dataset, using the software KING [61]. 
 
We used various metadata to inform which samples should be included in the PCA. Wherever 
possible, we used family trees going back 2–6 generations to corroborate the ancestral location 
of each potential reference. In other cases, ancestry survey responses were used to determine the 
four grandparents’ ethnicities and birth locations. When this information was unavailable, we 
relied upon expert opinion or previous MYORIGINS results. 
 
Fig. 6 exemplifies the before and after of reference selection using PCA. Several European 
populations are distinct enough (e.g., Finnish, Sardinian) that admixed samples become obvious 
and pruning them into good references is easy. Distinct populations tend to form their own 
isolated cluster along the axes of the PCA biplot, because the distance between points is related 
to the time to common ancestor [62]. However, many European countries show a pattern of 
isolation-by-distance, whereby samples are not grouped by population but rather spread across a 
two-dimensional gradient. For example, northern and southern Germany are as distinct as 
southern Germany is from central France. This makes reference selection more challenging, 
because there are multiple ways the boundaries can be drawn between populations. 
 
We used a combination of PCA and the global ancestry software ADMIXTURE [39] to select 
potential references, draw putative boundaries around populations, and iteratively test the 
efficacy of those samples and boundaries (Fig. 6). We used five-fold cross validation on 
supervised ADMIXTURE as our preliminary test for accuracy. In some cases, clusters looked 
distinct in PCA space (e.g., France and Germany), but ADMIXTURE showed accuracy to be 
poor unless they were combined (e.g., Central Europe). 
 
After we selected 8,053 references from our 90 MYORIGINS v3 populations (Table 2), we needed 
to hierarchically group them into more inclusive super-populations for chromosome painting (see 
Overview). We used several methods to generate a putative population tree of human life: 
TreeMix [63], Speedymix (e.g., Appendix A), hierarchical clustering on pairwise 𝐹"#, and 
scientific literature [63–68]. The super-population groupings are shown in Fig. 7. It is important 
to note: numerous studies [69–73] have shown that human population history is reticulated—not 
bifurcating—however, we use a bifurcating tree for simplicity. For example, our population tree 
depicts Polynesians as a bifurcation from other East Asians; however, in reality, Polynesians 
share dual ancestry [74] from Island Southeast Asians (70%) and Melanesia/New Guinea (30%). 
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Figure 6. Reference selection using Principal Component Analysis (PCA); Europe is shown here as an example. (A) 
Samples with both parents originating from each country in Europe are initially chosen as potential references. The 
extreme level of genetic overlap between neighboring countries, sometimes called “isolation-by-distance,” is 
apparent. (B) After several analyses are done to decide which populations are sufficiently distinct (see text), 
reference samples are selected as proxies for those ancestral populations. Example for illustrative purposes only. 
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Table 2. Population names and sample sizes for MYORIGINS v3. For super-populations, see Fig. 7.

Population Sample 
Count 

San Forager 42 
African Rainforest Forager (East) 32 
African Rainforest Forager (West) 76 
African Rainforest Forager (North) 14 
Senegal, Gambia & Guinea-Bissau 113 
Guinea & Sierra Leone 85 
Liberia & Ivory Coast 34 
Ghana, Togo & Benin 32 
Nigeria 123 
Northern Congo Basin 121 
Atlantic Equatorial Africa 200 
Southern Congo Basin 41 
Southern Africa 98 
Western Lake Victoria Basin 56 
Eastern Lake Victoria Basin 108 
East African Savannah 43 
Nile River Basin 16 
Eritrea, Northern Ethiopia & Somalia 120 
Southern Ethiopia 35 
Maghreb & Egypt 85 
Bedouin 18 
Southern Levant 114 
Druze 27 
Arabian Peninsula 70 
Yemenite Jewish 116 
Northern Levant 85 
Mesopotamia, Armenia & Anatolia 279 
Sephardic Jewish 53 
Mizrahi Jewish 41 
Ashkenazi Jewish 246 
Southern Caucasus 50 
Northern Caucasus 44 
Eastern Caucasus 103 
Basque 24 
Malta 33 
Sardinia 27 
Italian Peninsula 329 
Greece & Balkans 160 
Iberian Peninsula 256 
Magyar 43 
West Slavic 146 
East Slavic 219 
Central Europe 690 
England, Wales & Scotland 364 
Ireland 104 

Scandinavia 156 
Baltic 161 
Finland 235 
Indus Valley 62 
Afghanistan & Northern Pakistan 25 
Western India 46 
Northern India 30 
Southern India 108 
Eastern India 80 
Mongolia 164 
Southern Siberia 36 
Kalash 24 
Northwestern Siberia 26 
Western Siberian Plains 75 
Central & Eastern Siberia 30 
Taimyr Peninsula 13 
Yakut 19 
Northeastern Siberia 26 
Inuit 27 
Amerindian – North America 30 
Amerindian – North Mexico 14 
Amerindian – Yucatan Peninsula 12 
Amerindian – Central & South Mexico 11 
Amerindian – Central America 48 
Amerindian – Andes & Caribbean 57 
Amerindian – Argentina & Chile 19 
Amerindian – Amazon 19 
Japan 178 
Korean Peninsula 248 
Northern Han 63 
Southern Han 83 
Thailand and Southern China 91 
Laos, Vietnam & Cambodia 111 
Yao 11 
Myanmar 20 
Malaysia & Western Indonesia 72 
Northern Borneo 20 
Southern Borneo 125 
South Wallacea Islands 182 
Philippine Lowlands 81 
Philippine Austronesian 19 
Philippine Melanesian 11 
Polynesia 31 
Melanesia 9 
Sahul 30 
Total 8053 
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Figure 7. Population tree for 90 MYORIGINS v3 populations from a consensus of analyses such as TreeMix, 
Speedymix, hierarchical clustering on pairwise 𝑭𝑺𝑻, and academic literature. The 34 super-population groupings in 
MYORIGINS v3 are shown. Branch lengths have no meaning in this cladogram. Note: the true population tree of 
humanity is reticulated due to admixture; however, a bifurcating tree is used here for simplicity. Therefore, this 
tree is simply a clustering tool for organizing populations into super-populations and cannot accurately 
reflect the complex multi-population admixtures that occurred in deeper human ancestry. 
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Overview of MYORIGINS v3 Pipeline 

The MYORIGINS v3 pipeline integrates the population specificity of global ancestry inference 
with the genomic specificity of local ancestry inference as discussed above (see Overview). This 
means we can accurately estimate the proportion of DNA a customer inherited from very specific 
populations but only if genome-wide SNPs are deployed. Therefore, we do not attempt to “paint” 
chromosome segments at this level of population specificity. Broader and older groups—super-
populations—contain a higher density of SNP and haplotype frequency differences, allowing us 
to estimate a chromosome painting at this level in the population hierarchy. 
 
Using dual global and local estimators has the additional benefit of combining multiple checks. 
Global methods are limited by model assumptions such as the independence of SNP markers, 
and therefore, undiscovered correlation between markers can slightly bias results. In contrast, 
local methods make no such assumption, and in fact perform best with densely correlated SNPs 
(i.e., haplotypes). We therefore expect a slight increase in accuracy by normalizing a customer’s 
global ancestry proportions based on their local ancestry proportions. 
 
Another advantage of our dual estimators is our ability to screen a customer’s populations. 
Global ancestry results include a list of irrelevant populations, i.e., those with zero proportion. 
This is advantageous because local methods make noisier predictions than global methods.  
There is a very limited number of SNPs residing in local DNA segments, and this can cause 
misclassifications. Hence, we reduce this greatly by only selecting relevant reference panels in 
our local ancestry analysis. 
 
Global and local ancestry methods in the MYORIGINS v3 pipeline are thus mutually reinforcing, 
and our workflow leverages this principle (Fig. 8). Briefly, the steps are: 
 

• Global ancestry inference 
(1) A customer’s sample is combined with our reference panel at 379,880 SNPs. 
(2) Speedymix calculates ancestral proportions from 90 populations worldwide. 
(3) A list of relevant reference populations is selected for the next step. 

 
• Local ancestry inference 

(1) We phase the customer’s unphased genotype of 637,645 densely packed SNPs. 
(2) Breaking up each chromosome into small windows, segments are classified into 

relevant super-populations (out of 34 total). 
(3) A conditional random field smooths over misclassifications. 
(4) We correct phasing errors using a unique hidden Markov model. 

 
• Global-local ancestry integration 

(1) Globally estimated population proportions are normalized into locally estimated 
super-population proportions. 

(2) Chromosomes are sorted so that a chromosome painting may be displayed. 
 
In the following sections, we expand on these steps in more detail.  
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Figure 8. (A) Workflow for MYORIGINS v3. See text for details. (B) Hypothetical results for a customer whose eight 
great-grandparents are from different super-populations. In this example, the last great-grandparent (purple color) 
comes from two different populations. Only 1 of 22 autosomes are shown for simplicity.
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Global Ancestry – Speedymix 

We estimate global (genome-wide) ancestry for each customer using the references and SNP set 
described above (see Finding Population Structure). Our methodology is similar to sNMF [41] 
but with some important modifications—we call our software package Speedymix. The basic 
idea of Speedymix (Fig. 9) is that each SNP genotype in a customer’s data (𝐗) exists with a 
probability equal to the fraction of his/her genome that came from each population (𝐐), 
multiplied by the frequency of that genotype in each ancestral population (𝐆). 
 

 Pr(𝐗) = 𝐐𝐆 (1) 
 
Or more formally: the probability that individual 𝑖 possesses 𝑗 derived alleles at locus 𝑙 is 
 

 𝑝$%(𝑗) = 1𝑞$& × 𝑔&%(𝑗)
'

&()

, 𝑗 ∈ {0, 1, 2} (2) 

 
where 𝑞$& is the fraction of individual 𝑖’s genome from population 𝑘, and 𝑔&% is the frequency of 
that genotype (either 0, 1, or 2 derived alleles; i.e., 0/0, 0/1, or 1/1) at locus 𝑙 in population 𝑘. 
 
This brings us to the goal: estimate a customer’s ancestry proportions (𝐐). Based on Equation 1, 
we seek values of 𝐐𝐆 that minimize the difference between the most probable data Pr(𝐗) and 
the actual data (𝐗). This is accomplished using least-squares methods that minimize the value 
 

 LS(𝐐, 𝐆) = >|𝐗 − 𝐐𝐆|>
*
! (3) 

 
where >|𝐌|>

+
 is the Frobenius norm of a matrix 𝐌. We use the Alternating Least Squares (ALS) 

algorithm of nonnegative matrix factorization [75] to minimize the least-squares criterion in 
Equation 3. We select initial values for the 𝐐 matrix, then iteratively estimate least-squares 
values of 𝐆, followed by 𝐐, followed by 𝐆, etc. After each cycle values of 𝐆 and 𝐐 are 
normalized so all proportions and frequencies sum to 1.0. We also force all reference samples to 
ancestry proportions of 1.0 in their respective populations, making the analysis semi-supervised. 
The ALS algorithm alternates these cycles until it converges. This is determined by values 
remaining stationary: change in ancestry proportions (<0.01) and least-squares criterion (<10-6). 
 

 
Figure 9. An example Speedymix calculation. Global ancestry proportions 𝐐 multiplied by genotype frequencies 𝐆 
of each population yields a probability of a customer’s data 𝑷𝒓(𝐗). Minimizing the difference between 𝐏𝐫(𝐗) and 𝐗 
gives the best 𝐐 and 𝐆. This example shows four testing individuals (I), four loci (L), and two populations (K). 

L1 L2 L3 L4
I1 0 0 0 1

I2 0 0 1 2

I3 0 1 2 2

I4 1 2 2 2

K1 K2
I1 1.00 0.00

I2 0.67 0.33

I3 0.33 0.67

I4 0.00 1.00

0 1 2 0 1 2 0 1 2 0 1 2

K1 0.75 0.20 0.05 0.75 0.20 0.05 0.75 0.20 0.05 0.75 0.20 0.05

K2 0.05 0.20 0.75 0.05 0.20 0.75 0.05 0.20 0.75 0.05 0.20 0.75

L1 L2 L3 L4

P(X) Q G= ×
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Local Ancestry 

Phasing 

Humans are diploid (2N), meaning they inherit two genomes: one maternal and one paternal. 
Each haploid (1N) chromosome differs from its pair but only at a small number of positions. 
These heterozygous positions are genotyped individually, e.g., A/T, C/A, G/C, without any 
knowledge of the overall sequence that each parent contributed, e.g., AAG, TCC. The order of 
alleles along each haploid copy of chromosomes is known as the “phase.” Phasing—or 
determining the correct sequence of [ACGT] along haploid chromosomes—is essential for 
conducting local ancestry analysis. Population origins of a DNA sequence cannot be determined 
if the sequence is an incoherent blend of two chromosomes. 
 
The first step in local ancestry analysis is phasing each autosomal chromosome pair. We utilize a 
previously described software package called Eagle [76], which has been shown to outperform 
comparable programs such as Beagle and SHAPEIT, particularly when using large reference 
panels [77]. A large panel of unrelated individuals is essential for accurate phasing, and we use 
our 100K phasing panel. Eagle combines two different techniques for phasing: (1) searching a 
reference panel for short haplotypes that are exact matches (i.e., distant cousins that share DNA 
identical-by-descent (IBD) from a common ancestor); (2) modeling haplotype frequency in the 
panel to calculate the probability of each possible haplotype (Fig. 10). Eagle combines these two 
techniques for increased computational speed and accuracy. 
 
The Eagle algorithm contains three steps to phase a chromosome: 
 

(1) It scans the reference panel for >4 cM matching segments, i.e., those matching at least 
one allele at every SNP. Potential matches are scored according to their likelihood of 
being close or distant relatives (and not matching due to chance). All matches above a 
threshold likelihood score are then pruned to remove any matches that are 
inconsistent with other matches. Finally, phase is assigned to a customer’s genotype 
using the IBD matches. For every SNP that is heterozygous in the customer, a 
homozygous match is used to determine phase. If the SNP is heterozygous in all 
matches, then allele frequency is used to phase the SNP probabilistically. 
 

(2) It splits the chromosome into overlapping windows of approximately 1 cM, and once 
again, scans the reference panel for matches. This time it finds the best pair of 
complementary matches for both maternal and paternal haplotypes in the customer’s 
sample. The idea is to vastly increase the number of potential matching segments by 
allowing extremely distant relationships (e.g., 1 cM may be shared by 20th cousins). 
Several SNP mismatches are tolerated in this step to accommodate phasing errors 
from Step 1. The pair of complementary matches with fewest errors is used to locally 
refine the customer’s phase in each window. 

 
(3) Finally, it models haplotype frequency and recombination in the reference panel to 

statistically phase sites that were not adequately phased in the first two steps. Using 
up to 80 reference matches that represent both maternal and paternal haplotypes, it 



 

FamilyTreeDNA – MYORIGINS 3.0 

22 

phases 0.3 cM windows with a Hidden Markov Model (HMM). The model is based 
on a previously described model of recombination [78], which exploits the fact that 
unknown haplotypes are likely to be similar to frequently occurring haplotypes. 
Therefore, the HMM chooses appropriate references to phase the customer’s sample 
by penalizing recombination and mutation between the two matches. Two iterations 
of the Viterbi algorithm are used to find the most likely haplotype phase of the HMM. 

 
The end result of Eagle phasing is a set of SNP genotypes on each chromosome with maternal 
and paternal alleles separated into different haplotypes. Although Eagle phasing is ~99.7% 
accurate, it cannot be perfect. There are still switch errors (maternal/paternal transitions) 
approximately every few cM [76]. Since local ancestry methods classify tiny DNA segments that 
are much smaller than this, switch errors have little effect on the final ancestry proportions. 
However, at the end of the local ancestry pipeline, these switch errors must be corrected by using 
the inferred sequence of super-population ancestry (see Phase Correction). 
 

 
Figure 10. Eagle combines two different methods of phasing: exact IBD matches (top) and haplotype frequencies in 
a reference panel to generate phasing probabilities (bottom).
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Segment Classification 

Local ancestry inference (LAI) is a method for determining population ancestry along small 
segments of each chromosome. In contrast to a global ancestry method such as Speedymix, 
which can only determine overall ancestry proportions, LAI can also determine the genetic 
coordinates where each ancestral population segment was recombined. Chromosome painting is 
somewhat synonymous with LAI but generally refers to the result instead of the method.  

LAI has existed for nearly two decades and was originally designed as an extension of the most 
popular global ancestry method [19]. The idea behind LAI is to leverage the correlation between 
SNP markers that are in close proximity to one another. Recombination cannot fully break up the 
association between adjacent SNPs over shorter time intervals, a phenomenon known as linkage 
disequilibrium. Hence, the order of SNPs along a DNA segment can be highly informative about 
its population origin. Short segments of DNA that are shared by many individuals in a particular 
population due to ancient shared ancestry are known as identical-by-state (IBS). 

Some of the earliest applications of LAI were to identify locations of genes associated with 
human diseases, a process known as admixture mapping [15,20,21]. However, the method has 
also continually been refined in order to study human admixture proportions or measure the 
amount of time elapsed since admixture. Over two dozen methods of LAI now exist [12–36]. 
Very often, a Hidden Markov Model (HMM) or one of its derivatives is used to model ancestry 
as a hidden state, based on either the observed order of SNPs or haplotypes [15,19–21]. 
Sometimes, other classification methods are used in conjunction with or instead of an HMM: 
e.g., Markov chain Monte Carlo [19,21,30], iterated conditional modes [16], PCA [24,30], 
random forests [33], dynamic programming [14], and deep learning [28].

In MYORIGINS v3 we classify phased haplotype segments with our own proprietary machine 
learning technique (Fig. 11). We have found it to outperform one of the most popular LAI 
methods [33]. We break a customer’s phased chromosomal data into segments of 500 SNPs in 
overlapping windows spaced apart by 200 SNPs. Then, we classify each segment into one of 
several super-populations using a multi-class clustering method. Our technique is ideal for 
discriminating between groups with data that are complex and high-dimensional (such as SNP 
haplotypes). We use the same reference panel as in Speedymix except all references are phased 
at the full set of 637,645 SNPs. 

Our pipeline is novel and unique in its paired use of global and local estimates. Due to the 
inherently noisy nature of LAI, which must classify small segments with limited information, 
super-populations are used instead of populations. Using groups that are older and more distinct 
allows us to more accurately classify segments. Unlike other existing LAI methods, ours reduces 
noise in results by eliminating irrelevant super-populations during the Speedymix step. 
Additionally, we apply weights (𝐶) for each relevant super-population to correct for sample size 
imbalance: 𝐶& = 𝑁/(𝐾𝑁&), where 𝑁& is the sample size of class 𝑘, and 𝐾 is the total number of 
classes. The super-population confidence scores are mapped into probabilities using a sigmoid 
function to be used in the next step of our pipeline. 

FamilyTreeDNA – MYORIGINS 3.0 
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Figure 11. Segment classification steps. (A) Each pair of phased chromosomes is divided into windows spaced 200 
SNPs apart, and overlapping segments of 500 SNPs are taken from each window for classification. (B) ACGT letter 
size represents frequency of that nucleotide in hypothetical super-populations 1 and 2 along a 500 SNP haplotype. 
Haplotype differences between super-populations are quantified and modeled. (C) Our proprietary classification 
technique is trained on all super-populations to maximize the distance between them in multi-dimensional space. 
The star indicates a customer sample that was predicted into hypothetical super-population 1.
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Conditional Random Field 

Once each segment of each chromosome is assigned probabilities of each super-population, we 
use those probabilities to parameterize a linear chain conditional random field (CRF). This 
process uses pattern recognition of an entire chromosome to better predict the sequence of 
ancestries. The CRF “smooths over” each segment classification by incorporating information 
from neighboring segments on the chromosome. Although the small number of SNPs available 
to segment classifiers can result in more noise (Fig. 2C), the CRF step adjusts misclassifications 
by maximizing the probability of the entire sequence (Fig. 12). Our linear-chain CRF follows 
[33] except that our segment probabilities are estimated by our method instead of random forests. 
 
For each chromosome, we model the ancestries of individual haplotypes {1. . . 𝑁} across 200 SNP 
windows {1. . .𝑊} as an 𝑁 ×𝑊 matrix 𝐀, where 𝐀$,- is the most probable super-population 𝑘 ∈
{1. . . 𝐾} for individual 𝑖 at window 𝑤. Similarly, we model all haplotypes as an 𝑁 ×𝑊 matrix 𝐇, 
where 𝐇$,- is the haplotype ℎ for individual 𝑖 at window 𝑤. 
 
The log-linear probability of ancestries across individual 𝑖’s entire haploid chromosome is 
 

 PrK𝐀$,∗>𝐇$,∗: ΘN = (4) 
   

1
𝑍K𝐇$,∗N

exp S11 1 𝜃-,&,/0 110&,((&2113&,((/2
/∈ℋ(

'

&()
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-()
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where ℋ- includes all possible haplotypes in window w, 1{9(:} equals 1 if 𝑥 = 𝑦 and 0 
otherwise, and 𝑍K𝐇$,∗N is a partition function for normalizing the probability: 
 

 𝑍K𝐇$,∗N = (5) 
 

								1expS11 1 𝜃-,&,/0 11<&,((&2113&,((/2
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The parameter 𝜃0 is a probability for the ancestry of the haplotype in each window: 
 

 𝜃-,&,/0 = 𝑙𝑛(𝑃𝑟(𝐀$,- = 𝑘		|		𝐇$,- = ℎ)) (6) 
 
The parameter 𝜃# is the joint probability of ancestry in two adjacent windows: 
 

 𝜃-,&,&)
# = 𝑙𝑛(𝑃𝑟(𝐀$,- = 𝑘, __𝐇$,-=) = 𝑘>)) 

 
(7) 

Parameter values of 𝜃0 are estimated by the multi-class segment probabilities (previous step), 
whereas the 𝜃# values are estimated by a previously described [19] linkage model of admixture: 
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 PrK𝐴$,- = 𝑘,𝐻$,-=) = 𝑘>N = a
𝑞&(𝑒𝑥𝑝(−𝑑-𝐺) + (1 − 𝑒𝑥𝑝(−𝑑-𝐺))𝑞&))						if	𝑘 = 𝑘>
𝑞&((1 − 𝑒𝑥𝑝(−𝑑-𝐺))𝑞&))																															otherwise

 

 

(8) 

where 𝑑- is the distance between the midpoints of windows 𝑤 and 𝑤 + 1, 𝐺 is the number of 
generations since admixture, and 𝑞& and 𝑞&> are the chromosome-wide admixture proportions for 
the super-population in the current window (𝑘) and the next window (𝑘>). 
 
The logic for this linkage model is as follows. Recombination is responsible for breaking apart 
and fusing together DNA haplotypes from different super-populations. One breakpoint does not 
influence the location of a future breakpoint; thus, recombination can be modeled as a random 
Poisson process. The term 𝑑𝐺 can be thought of as the expected number of recombination events 
within the window since admixture occurred. The top portion of equation (9) accounts for the 
possibility that no recombination has occurred in the window, or there has been at least one 
breakpoint but with the adjacent windows coming from the same super-population. The bottom 
portion of equation (9) accounts for the possibility of at least one breakpoint, resulting in a 
switch from super-population 𝑘 to 𝑘>. We use a uniform distribution for values of 𝑞& to simplify 
the model, although chromosome-wide admixture proportions could be included in the future. 
 
For each customer’s haploid chromosomes, we use the Viterbi algorithm along with the CRF 
probability to infer the most likely chain of ancestries. 
 

 
 

Figure 12. Effect of the Conditional Random Field: noisy classifications are “smoothed out” by a linkage model.

CRF
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Phase Correction 

Statistical phasing is >99% accurate, but this small minority of switch errors add up across 
100,000s of SNP positions. Fortunately, the end result can be corrected by essentially “phasing” 
the final super-population labels. We use a Hidden Markov Model (HMM) parameterized by 
some basic expectations of which pair of maternal/paternal labels are most probable in each 
window, given the labels in the previous window (Fig. 13). Phase correction, the removal of 
switch errors using an HMM, is nearly as old as local ancestry inference itself [13,14,28,33]. 
 
First, we initialize the space for hidden states and observations. For each window 𝑤 along a 
chromosome, the observation is a diploid pair of predicted super-population labels, and the 
hidden state is the true pair of super-population labels. If a customer’s result includes proportions 
from 𝐾 super-populations, then the observation space 𝑖/𝑖> and hidden state space 𝑗/𝑗> are both 
pairs of super-population labels where 𝑖, 𝑖>, 𝑗, 𝑗> ∈ {1. . . 𝐾}. 
 
We assume that all observations are potentially unphased but contain the correct labels. 
Therefore, our HMM model only allows the chromosome strands to be flipped. The emission 
probabilities of observed states given hidden states is: 
 

 PrK𝐎$$)|𝐒??)N = n0.5																		if	(𝑖 = 𝑗	and	𝑖> = 𝑗>)	or	(𝑖 = 𝑗>	and	𝑖> = 𝑗)
0																																																																																otherwise

 

 

(9) 

To illustrate this: when label pair 1/2 is observed, the hidden state for it can only be 1/2 or 2/1 
with equal probabilities. 
 
The main correction comes from our transition probabilities. Recombination happens rarely 
compared with the number of windows, so we assign higher probability for hidden states to 
belong to the same chromosome strand: 
 

 

PrK𝐒$$),-|𝐒??),-7)N =	

⎩
⎪
⎨

⎪
⎧
𝑝)																																																																																											if	(𝑖 = 𝑗	and	𝑖> = 𝑗>)
0																																																																																													if	(𝑖 = 𝑗>	and	𝑖> = 𝑗)
(1 − 𝑝))𝑝!																																				if	(𝑖 = 𝑗	and	𝑗 ≠ 𝑗>)	or	(𝑗 = 𝑗>	and	𝑖 ≠ 𝑖>)
(1 − 𝑝))(1 − 𝑝!)𝑝@																	if	(	𝑖 = 𝑗>	and	𝑗 ≠ 𝑖>)	or	(𝑗 = 𝑖>	and	𝑖 ≠ 𝑗>)
(1 − 𝑝))(1 − 𝑝!)(1 − 𝑝@)							if	(	𝑖 ≠ 𝑗	and	𝑗 ≠ 𝑗′)	or	(𝑗 ≠ 𝑖>	and	𝑖 ≠ 𝑗>)

 

(10) 

 
where 𝑝) = 0.85, 𝑝! = 0.85, and 𝑝@ = 0.75 (see Table 3). 
 
Table 3. Transition probabilities for each type of change between diploid pairs of super-population labels. 

Type Example Probability 
No change 1/2 to 1/2 0.85 
Strand flip 1/2 to 2/1 0.00 
Partial overlap 1/2 to 1/3 0.1275 
Partial overlap after strand flip  1/2 to 3/1 0.016875 
Other 1/2 to 3/4 0.005625 
Total   1.00 
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We employ one additional type of penalty on top of the aforementioned transition probability 
matrix and also a gap filling procedure prior to estimating the HMM via the Viterbi algorithm. 
 

(1) Penalty from hierarchical clustering. Across all windows, we count how frequently pairs 
of super-population labels appear together. We then use that frequency table to conduct 
hierarchical clustering analysis. The resulting tree structure is informative about whether 
or not maternal and paternal labels can easily be separated or “bucketed.” We apply a 
penalty in our transition probability matrix PrK𝐒$$),-|𝐒??),-7)N to labels being phased in a 
way that violates this bucketing. The magnitude of the penalty is dependent upon how 
well separated the buckets are. 

 
(2) Gap filling procedure. The HMM assumes all classifications have been fixed by the CRF; 

however, there may still be misclassified “gaps” of one or two windows. These 
sometimes occur if a true recombination breakpoint does not perfectly align with the 
windows we use for classification. For example, consider this result: 

 
 1/2, 1/2, 1/2, 1/2, 1/2, 2/2, 2/1, 2/1, 2/1, 2/1, 2/1  

 
This is likely caused by a phasing error that requires a correction to: 
 

 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2  
 

However, the window in bold features a misclassification of 2/2. We only allow our 
HMM to correct phasing, not minor classification errors—we find that these two 
components are best corrected separately. Instead, we fill these gaps of 1–2 windows 
prior to estimating the HMM. 
  

 
 

Figure 13. Phase Correction: The HMM transition probabilities remove switch errors caused by imperfect phasing.

Phase
Correct.
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Global-Local Ancestry Integration 

The final step merges global and local ancestry results. Population percentages estimated by 
Speedymix are normalized into the super-population percentages estimated by local methods 
(Table 4). This takes advantage of the higher accuracy of local classification methods when used 
on suitably distinct (super-)populations and the higher population specificity of global methods 
when given genome-wide information (see Overview and Overview of MYORIGINS v3 Pipeline). 
 
There will generally be very minor discrepancies between the two results, and any difference is 
typically an improvement (see Validation). This is because the local classifier is fed the exact 
genomic coordinates of each segment and can therefore apportion them better. For example, the 
hypothetical customer in Table 4 has three Ashkenazi grandparents and one grandparent from 
Western Europe. That last grandparent is half Scandinavian and half Irish. Let us assume the true 
percentages are Ashkenazi: 75%, Scandinavian: 12.5%, and Irish: 12.5%. In this case, 
Speedymix slightly overestimates their Ashkenazi percentage from a slight overrepresentation of 
SNPs in those genomic regions. The local classifier corrects this overestimate and the 1:1 ratio of 
Scandinavian/Irish populations are finally integrated, thus combining strengths of each method. 
 
When calculating final percentages, there are two possible units of total DNA: centimorgans or 
megabases. The former measures the length of DNA by how frequently it recombines, whereas 
the latter measures the physical length. Although both units are reasonable ways to quantify a 
customer’s population percentages, we think that physical length is more intuitive. This makes 
the statement (“X% of my DNA is from Y population”) more accurate. Therefore, we sum and 
normalize results in units of megabases. 
 
The final result includes a chromosome painting that shows the ancestry of each DNA segment 
(Fig. 14). Each chromosome pair is sorted by the major genome-wide percentage. We exclude 
our calculation from two genomic regions that are SNP-poor (within chromosomes 1 and 9). 
These regions are in close proximity to the centromere and more conserved, i.e., less likely to 
mutate. We also exclude the short arms of Chromosomes 13–15 and 21–22 from our SNP array. 
These short arms contain an abundance of repeated sequences, low recombination rate, and low 
SNP density; hence, they are excluded from our SNP genotyping array. 
 
Table 4. Example normalization of results. This hypothetical customer has three Ashkenazi grandparents and one 
British/Irish grandparent. The true percentages are achieved by normalizing global and local ancestry results. 

Global Ancestry   Local Ancestry   Final Integrated Result 

Ashkenazi Jewish 80%  European Jewish 75%  European Jewish 
Ashkenazi Jewish 

  
75% 

Scandinavia 10%  

Western Europe 25% 

 Western Europe 
Scandinavia 

  
12.5% 

Ireland 10%     Western Europe 
Ireland 

  
12.5% 
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Figure 14. Example chromosome painting for a customer with three Ashkenazi grandparents and one ½ 
Scandinavian ½ Irish grandparent. The missing segments on Chr. 1 and 9 are SNP-poor areas that cannot be 
classified confidently. Segments missing from Chr. 13–15, 21–22 are not included on our SNP genotyping array.
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Validation 

We used leave-one-out cross validation (LOOCV) to assess the performance of MYORIGINS v3. 
For every one of our 8,053 references, we removed it from the panel and predicted its ancestry 
into all 90 populations. A proportion of 1.0 in its own population would be perfect (Fig. 15). 
 

 

 
Figure 15. Estimated population proportions of references by Speedymix (left) and the entire pipeline (right). 
Boxplots show median and interquartile range (middle 50% of values) for each reference in its own population. 
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Our pipeline has a mean accuracy of 0.89 ± 0.03. In other words, the mean percentage estimated 
for a reference sample in its correct population is 89%. This is an improvement from using our 
global method Speedymix alone (0.84 ± 0.02). The largest variation in accuracy is found in 
continents with numerous freely migrating populations, such as Europe. Hundreds to thousands 
of years of shared gene flow and isolation-by-distance can make genetic variation between 
groups very indistinct (see Finding Population Structure). Inaccurate classifications tend to be 
between geographically neighboring populations that share many recent common ancestors, such 
as Great Britain and Central Europe or Nile River Basin and East African Savanah (Fig. 16). 

 

 
Figure 16. Confusion matrix for Fig. 15. Each row shows the true populations; columns show the estimated 
populations. Each square indicates the mean estimated proportion of the correct population (black), or incorrect 
population (red). Only incorrect estimates >0.05 are shown. 
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At the level of super-populations (Fig. 17), our pipeline has a mean accuracy of 0.96 ± 0.02, 
which is also an improvement from using our global method Speedymix alone (0.90 ± 0.03). 

 

 
 

Figure 17. Estimated super-population proportions of references by Speedymix (left) and the entire pipeline (right). 
Boxplots show median and interquartile range (middle 50% of values) for each reference in its own super-
population. 
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Certain super-populations, such as Myanmar, represent a mix between historical groups 
(Northeast Asia and Indian Subcontinent [79]) leading to slightly reduced accuracy (Fig. 18). 
Others may contain a small amount of recent admixture with other groups (e.g., Arctic and 
Western Europe), slightly lowering accuracy. However, an overall accuracy of 0.96 indicates that 
super-populations are highly predictable and a much more genetically distinct grouping in the 
population hierarchy (see Fig. 2), which validates using these for chromosome painting. 
 
 

 
 
Figure 18. Confusion matrix for Fig. 17. Each row shows the true super-populations; columns show the 
estimated super-populations. Each square indicates the mean estimated proportion of the correct super-
population (black) or incorrect super-population (red). Only incorrect estimates >0.05 are shown. 
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We also estimated that our previous version of MYORIGINS had a mean accuracy of 0.84 ± 0.06. 
Given the near quadrupling of our population number and the known tradeoff between accuracy 
and specificity (see Overview), this amounts to a large improvement overall (Fig. 19). 
 

 
 

Figure 19. Accuracy increase between the previous MYORIGINS v2 and the new MYORIGINS v3. Population names 
shown here are the previous (v2) names and are compared to an analogous group in v3. 
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Next, we validated the performance of our pipeline on admixed customers. Although the above 
LOOCV procedure on references is informative, it does not test the ability to accurately predict 
percentages other than 100%. Therefore, we created a validation set of admixed samples with 
known population percentages of 25%, 50%, and 75%. We created pedigrees of four references 
as grandparents from two different populations. Then we simulated genetic recombination to 
create admixed grandchildren. Finally, we removed these four references from the panel and 
predicted each simulated customer. 
 
We used three main types of admixture, which we refer to here as F1, F1B, and F2 (Table 5). 
These indicate the population identity of the four grandparents. F1s are 50% of each population, 
and both parents are 100%. F2s are 50% from each population, but each parent is also 50%. 
Finally, F1Bs have one grandparent from a unique population with percentages of 75% / 25%. 
Although these are the genealogical percentages, genetic recombination is random; hence, the 
genetic percentages are more variable. For example, the mean and S.D. of genetic percentage for 
F1Bs was actually 75.1 ± 4.6% and 24.9 ± 4.6%, and for F2s was 50.0 ± 6.4%. 
 
 
 
Table 5. Simulated admixed samples created from different combinations of two populations. 

Type 
Sample 

Size 

Father's 
Father’s 

Population 

Father's 
Mother’s 

Population 

Mother's 
Father’s 

Population 

Mother's 
Mother’s 

Population 

F1 10 
1 1 2 2 
2 2 1 1 

F1B 20 

1 1 1 2 
1 1 2 1 
1 2 1 1 
2 1 1 1 

F2 20 

1 2 1 2 
2 1 2 1 
2 1 1 2 
1 2 2 1 

Total 50         
 
 
 
With 𝑁 = 50 validation samples to test for each pair of populations and 90 × 89 2⁄ = 4005 
possible population combinations, we opted not to test all > 200,000 samples. Instead, we 
selected 12 representative pairs of populations that spanned a range of genetic distances from 
close to far (Table 6). This gave us a reasonable demonstration of the pipeline’s performance 
across a range of geographic backgrounds, combinations, and levels of genetic similarity. We 
assessed performance at both the population and super-population level. For example, we 
assessed an Irish sample’s estimated percentage of Ireland and also of Western Europe. 
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Table 6. Populations used for simulated admixture. We estimated results from different population distances. 

Distance Population 1 Population 2 

Far 

Ireland Nigeria 
Scandinavia Amerindian – North America 
Iberian Peninsula Japan 
Eastern Lake Victoria Basin Polynesia 

Medium 

Northern Han Philippine Lowlands 
Ashkenazi Jewish East Slavic 
Eastern Caucasus Mizrahi Jewish 
Southern India Central Europe 

Close 

Greece & Balkans East Slavic 
Mesopotamia, Armenia & Anatolia Arabian Peninsula 
Laos, Vietnam & Cambodia Japan 
Western Lake Victoria Basin Eritrea, Northern Ethiopia & Somalia 

 
 
 
For the mixed samples we tested, our pipeline has a mean population accuracy of 0.91 ± 0.07 and 
a mean super-population accuracy of 0.94 ± 0.05. See Figs. 20–22. We define accuracy here to 
be the weighted accuracy of each component, i.e., 1 − (𝑝)𝛿) + 𝑝!𝛿!), where 𝑝& is the true 
proportion of population 𝑘, and 𝛿& is the absolute difference between the true end estimated 
proportion. Although there is some minor difference between types of admixture (F1, F1B, F2), 
most of the variation in accuracy depends upon population distance (far, medium, close) and the 
mean accuracy of specific populations (Figs. 15–18). For example, the mean accuracy of “far” 
population mixes (0.92) is higher than for both “medium” and “close” populations (0.90). 
Similarly, the mean accuracy of mixes with European populations (0.89) and without them (0.93) 
demonstrates that population differences in Figs. 15–18 are relevant here too.  
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Figure 20. Estimated accuracy for samples with simulated admixture (with far distance between populations). 
Results for populations are shown on the left, and results for the corresponding super-populations on the right. 
Definitions of admixture types (F1, F1B, and F2) are in-text and Table 5. Black circles indicate the true proportion; 
hence, any scatter around the circle indicates estimation error. 
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Figure 21. Estimated accuracy for samples with simulated admixture (with medium distance between populations). 
Results for populations are shown on the left, and results for the corresponding super-populations on the right. 
Definitions of admixture types (F1, F1B, and F2) are in-text and Table 5. Black circles indicate the true proportion; 
hence, any scatter around the circle indicates estimation error. 
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Figure 22. Estimated accuracy for samples with simulated admixture (with close distance between populations). 
Results for populations are shown on the left, and results for the corresponding super-populations on the right. 
Definitions of admixture types (F1, F1B, and F2) are in-text and Table 5. Black circles indicate the true proportion; 
hence, any scatter around the circle indicates estimation error.
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Future Improvements 

Although this release is already very exciting, we anticipate several updates for the future: 
 

• Increased reference panel – Our reference panel will continue to grow as people seek out 
their new MYORIGINS v3 results. Much of our improved power to predict specific and 
unique populations is powered by our customers. In the future, we will continue to offer 
more populations and improved references as they become available. Group Project 
Administrators can assist this ever-expanding effort by recommending to us multiple 
(ideally 30+) FamilyTreeDNA customer kit numbers from not closely related people that 
have a strong genealogical connection (all four grandparents) from an under-represented, 
specific, or unique population. 
 

• Trio phasing – The method of phasing that we employ for this release of MYORIGINS v3 
is known as statistical “population” phasing. The accuracy of a customer’s phasing 
depends on our having a sizable panel of distant relatives to the customer, because each 
match can only phase part of their DNA. Trio phasing is another approach that directly 
uses one or both parents of a customer to phase their DNA. In the future, we may allow 
customers with linked parent-child relationships in the family tree to improve their results 
with trio phasing (both parents available) or duo phasing (one parent available). 
 

• Genealogy tools – We plan to include MYORIGINS v3 results in the Chromosome 
Browser. This will allow customers to compare their matched segments with population 
segments to help narrow down the common ancestor’s identity and location. 
 

• Y-DNA and mtDNA integration – Our diverse autosomal database with data for 90 
populations can be integrated with the largest databases of Big Y and mtFull 
haplogroups! We plan to offer frequency tables and maps that relate MYORIGINS v3 
populations to haplogroups. 
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Appendix 

Appendix A. Unsupervised Speedymix analysis of 90 reference populations. This analysis 
shows hierarchical population structure across the world by forcing global genetic diversity to be 
partitioned into 𝐾 clusters. Continental-level structure is well-demonstrated at 𝐾=10, and more 
sub-continental and ethnic structure is shown between 𝐾 of 20–60. Colors are randomly selected, 
and balanced sample sizes of N £ 30 samples are randomly chosen for each population. 
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